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The Entropy Formula for SRB-Measures of
Lattice Dynamical Systems
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We give a detailed proof of the entropy formula for SRB-measures of coupled
hyperbolic attractors over integer lattices. We show that the topological
pressure for the potential function of the SRB-measure is zero.
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1. INTRODUCTION

We proved in ref. 3 that the thermodynamic limit of Sinai�Ruelle�Bowen
measures for coupled hyperbolic maps over finite volumes of an integer lat-
tice exists as the volume tends to infinity. The limiting measure, also called
an SRB-measure, is an equilibrium state satisfying the variational principle
of statistical mechanics for a Ho� lder continuous function .0 on an infinite-
dimensional hyperbolic attractor. The measure is invariant and exponen-
tially mixing with respect to both spatial and temporal translations. The
formula for computing the potential function .0 is explicitly given. In this
note, we give a detailed proof of a result in ref. 3 stating that the topologi-
cal pressure for this potential function is zero with respect to the group
actions induced by both spatial and temporal translations. Thus, the
entropy formula holds for the SRB-measure for the coupled hyperbolic
map lattice. This result further justifies the name of the measure since the
topological pressure being zero is one of the characteristics of an SRB-
measure on hyperbolic attractors of finite dimension. It also paves the way
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for estimating the measure theoretical (space-time) entropy in terms of
hyperbolicity and coupling strength of coupled hyperbolic map lattices.

The proof is a rather straightforward computation using the definition
of topological pressures for continuous functions on a compact metric
space with respect to a Zd-action induced by d interchangeable homeo-
morphisms. First, we briefly describe the infinite-dimensional system:
weakly coupled identical systems with a uniformly hyperbolic attractor and
the results concerning its SRB-measure. We then use the conjugacy
between hyperbolic systems and their symbolic representations and special
properties of the potential function .0 to show that its topological pressure
is zero.

2. SRB-MEASURES FOR COUPLED MAP LATTICES

Let M be a smooth compact Riemannian manifold and f be a C r-diffeo-
morphism of M, r>1. We assume that f possesses a hyperbolic attractor 4,
i.e., f is uniformly hyperbolic on 4 and there exists an open neighborhood
U#4 such that f (U )/U and ��

k=1 f k(U )=4.
A Sinai�Ruelle�Bowen measure + for f on the hyperbolic attractor is

described by the following limit:

lim
n � �

1
n

:
n&1

k=0

g( f k(x))=| g d+

where the equality holds for any continuous function g on M and for
almost all x # U with respect to the Lebesgue measure.(1) When, f is
topologically transitive on 4, this measure + is also unique and is the
unique equilibrium state that satisfies the entropy formula

h+( f )=&| .f (x) d+

where h+( f ) is the measure theoretical entropy and .f (x)=&log Juf (x)
(Juf (x) is the Jacobian of the restriction of f along the unstable manifold
at x).

Since we shall consider SRB-measures for direct product spaces of
(M, f ), we further assume that f is topologically mixing on 4. This
assumption will ensure uniqueness of SRB-measures since product spaces
of topologically mixing systems are still topologically mixing and topologi-
cal transitivity is not preserved by the direct product.

The direct product of identical copies of M over a d-dimensional
integer lattice M=}i # Z d Mi is an infinite-dimensional Banach manifold
with a Finsler metric induced by the Riemannian metric on M.
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The distance on M induced by the Finsler metric is

\(x� , y� )=sup
i # Zd

d(x i , yi)

where x� =(xi) and y� =( yi) are two points in M and d is the Riemannian
distance on M.

The direct product map on M defined by F=}i # Zd f i possesses an
infinite-dimensional hyperbolic attractor 2F=} i # Zd 4i , where fi and 4i

are copies of f and 4, respectively.
We recall the definitions of some objects discussed in ref. 3.
Let S denote the spatial translations on M induced by the translations

on the integer lattice Zd, i.e., for any k # Zd and x� =(xi) # M, S k(x� )=
(xi+k). Let the map G be a C2-perturbation of the identity map on M.
G is said to be spatially translation invariant if G b S=S b G. It is said to
have short range property if G, written in the form G=(Gi) i # Z d , where
Gi : M � Mi , has the following property: there exist a decay constant %,
0<%<1 and a constant C>0 such that for any fixed k # Zd and any points
x� =(xj), y� =( y j) # M with xj= yj for all j # Zd, j{k,

d(Gi (x� ), Gi ( y� ))�C% |i&k|d(xk , yk)

Define 8=F b G (or equivalently, 8=G b F, since F is also a diffeo-
morphism). The map 8 is a perturbation of F. The infinite-dimensional
dynamical system (M, (8, S)) is called a coupled map lattice. If G=id, the
lattice is called uncoupled. When G is spatially translation invariant, 8
satisfies the same property and the pair (8, S) generates a Zd+1-action
on M.

In order to study invariant measures of coupled map lattices, a family
of metrics compatible with the Tychonov compact topology (the direct
product topology) on M is introduced. The metric \q , 0<q<1, is defined
by

\q(x� , y� )=sup
i # Z d

q |i |d(xi , yi)

where |i |=|i1 |+|i2 |+ } } } +|id |, i=(i1 , i2 ,..., id) # Zd.
We state the main results in refs. 2 and 3 on the existence of SRB-

measures for 8 and the properties of this measure.

(1) For any =>0 there exists 0<$<$0 such that, if dis-
tC 1 (8, F )�$, then there is a unique homeomorphism h: 2F � M satisfying
8 b h=h b F |2F

with distC 0 (h, id )�=. In particular, the set 28=h(2F ) is a
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topologically mixing hyperbolic attractor for the map 8. The conjugating
map h is spatial translation invariant whenever G is.

(2) For any 0<%<1 there exists $>0 such that if G is a C2-spatial
translation invariant short range map with a decay constant % and
distC 1 (G, id )�$, then the conjugacy map h is Ho� lder continuous with
respect to the metric \q , 0<q<1. Moreover, h=(h i (x� )) i # Z d satisfies the
following property:

d(h0(x� ), h0( y� ))�C($) d :(xk , yk)

for every k{0 and any x� , y� # M with xi= yi , i # Zd, i{k, where :,
0<:<1, and C($)>0 are constants. Furthermore, C($) � 0 as $ � 0.

Fix a point x� * # 28 , and a finite volume V/Zd, the map 8V : xV �
8V (xV ) on MV= � i # V M i is defined coordinatewisely by

(8V (xV )) i=(8((xV , x*|V� )) i , i # V

where the point (xV , x*| V� ) denotes an element in M whose restrictions to
V and its complement V� are xV and x*|V� , respectively.

The map 8V is a diffeomorphism of MV when the perturbation G is
sufficiently close to identity and it is C1-closed to the diffeomorphism
FV=}i # V f. By the structural stability theorem 8V possesses a hyperbolic
attractor 28V

since FV has a hyperbolic attractor 2FV
=}i # V 4. There

exists a conjugating homeomorphism hV : 2FV
� 28V

, 8V b hV=hV b FV .
The maps 8V and hV provide finite-dimensional approximations for

the infinite-dimensional maps 8 and h, respectively.

(3) Let +V be the SRB-measure on the hyperbolic attractor 28V
for

the map 8V . Then, the measure +V weakly converges to a measure +
on 28 . The measure + is invariant and exponentially mixing under 8 and
spatial translations S. It also satisfies the variational principle:

P{(.0)=h+({)+| .0 d+

where { denotes the Zd+1 action on 28 induced by 8 and S, P{(.0) is the
topological pressure for the potential function .0 , and h+({) is the measure
theoretical entropy of + with respect to {.

(4) The construction of the potential function .0 can be described in
the following way. By assumption, the map 8=F b G is C1-close to F and
the map G has short range property, under an appropriately chosen local
coordinate system, the restriction of the derivative operator of 8V to the
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unstable space E u
8V

at point hV (xV ) has the following matrix representa-
tion:

D8|Eu
8V

(hV (xV))=(Duf (xi))(I+AV (xV ))

where AV (xV )=(aij (xV )) is a |V |_|V | matrix with submatrices a ij (xV ) as
its entries, (Duf (xi)) is a diagonal matrix with Duf (xi), i # V (the matrix
representation of Df restricted to the unstable space) on its main diagonal,
and |V | is the cardinality of V. Note that xV # 2FV

. The norms of sub-
matrices aij (xV ) are small and go to zero exponentially fast as |i& j | � �.
The entries aij (xV ) are also Ho� lder continuous with respect to the metric \q .
The determinant of (I+AV ) is then expanded in the following way.

det(I+AV )=exp(trace(ln(I+AV ))=exp \& :
i # V

wVi+
where

wVi (xV )= :
�

n=1

(&1)n

n
trace(an

ii (xV ))

and an
ii (xV ) are submatrices on the main diagonal of (AV )n.

The functions wVi (xV ) have the following properties. There exist con-
stants =0>0, ;>0 such that

|wVi (xV )&wV$i ( yV$)|�=0 e&;d(i, V ) (1)

where V/V$, xV= yV$ |V , and d(i, V ) denotes the distance from the lattice
site i to the boundary of V. The estimation (1) implies that the limit
�i (x� )=limV � Z d wVi (xV ) exists for each i # Zd. This limit is also translation
invariant in the following sense. Let �(x� )=limV � Z d wV0(xV ). Then,
�i (x� )=�(S ix� ). Moreover, �(x� ) is Ho� lder continuous with respect to the
metric \q with a Ho� lder constant going to zero as the C1-distance between
8 and F tends to zero.

The potential function .0 for the SRB-measure for the coupled map
lattice (8, S) composed with the conjugating map h is

.0(h(x� ))=&log J uf (x0)+�(x� ) (2)

The potential function is expressed slightly differently from that in ref. 3
since we have a hyperbolic attractor instead of an Anosov system and .0

is described by a composition for the convenience of later computation.
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3. COMPUTING THE TOPOLOGICAL PRESSURE

In this section we prove that the topological pressure of the potential
function .0 with respect to the Zd+1-action induced by the coupled map
lattice (8, S) is zero on the hyperbolic attractor 28=h(2F ) : P{(.0)=0.
Therefore, the entropy formula h+({)=&� .0 d+ holds for the measure +.
We first recall the definition of the topological pressure.(6)

3.1. Topological Pressure

Let 0 be a compact metric space and { a Zd+1-action on 0 induced
by d+1 commuting homeomorphisms, d�0. For any two covers of 0
U=[Ui] and B=[Bi], U 6 B denotes the cover of 0 consisting of all
sets of the form Bi & Uj . For a finite volume V/Zd+1 define

UV= �
i # V

{&iU

Let U be any cover of 0, . a continuous function on 0, and V a finite
subset of Zd+1. The partition function is defined by

ZV (., U)=min
[Bj ] {:

j

exp _ sup
x # Bj

:
i # V

.({ix)&= (3)

where the minimum is taken over all subcovers [Bj] of UV. Because of the
subadditivity of the partition function, the following limit exists and is call
the topological pressure with respect to the cover U.

P{(., U)= lim
V A �

1
|V |

log ZV(a)(., U)

where V A � means V approaches Zd+1 in the sense of Van Hove. When
U is an open cover, the quantity

P{(.)= lim
diam U � 0

P{(., U)=sup
U

P{(., U)

is called the topological pressure of . with respect to {.
It is easy to see that for a fixed volume V0

P{(., U)=P{(., UV0)

When { is expansive and diam U is smaller than the expansive constant, we
have P{(.)=P{(., U).
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Before we proceed to the actual computation, we first state the
strategy:

First of all, we project every object onto the hyperbolic attractor 2F

for F. The metrics we are using now is the metric \q . Since the conjugating
map h is Ho� lder continuous, it is easy to see that P{(.)=P{(.(h(x� )). It is
much easier to compute P{(.(h(x� )) since the Zd+1-action { induced by
(F, S) is now acting on the direct product space 2F=}i # Zd 4i .

Next, we use the Markov partition of 4 for the map f to obtain a
natural symbolic representation of the system (2F , (F, S)). Using a result
from an earlier paper, (2) we can compute the topological pressure on the
symbolic space where the discrete topology is an advantage.

In the actually computation of the partition function for the potential
function .0(h(x� )) with respect to the Zd+1-action {, we compare it with the
partition function of the potential function &log Ju8V (hV (xV )) for the
SRB-measure of 8V projected onto the hyperbolic attractor 2FV

. Note that
this partition function is computed with respect to the Z-action generated
by FV . Using the fact that the pressure is zero for &log Ju8V (hV (xV )). We
can prove that the pressure for .0 is also zero.

3.2. Markov Partition and Symbolic Representation

Since the set 4 is a hyperbolic attractor for the diffeomorphism f, for
any =>0, there exists a Markov partition of 4 into proper rectangles:

4= .
p

i=1

Ri

where [Ri] satisfy the following properties.(1, 5)

(1) diam R=maxi diam(Ri)<=.

(2) For each i, Ri is proper: int Ri =Ri .

(3) For any two points x, y # Ri , there is a unique point in the inter-
section of the local stable manifold at x, W s

=(x) and the local unstable
manifold at y, W u

= ( y). This point denoted by [x, y] is also in Ri : [x, y]=
W s

=(x) & W u
=( y) # R i , i.e. R i is a rectangle.

(4) int Ri & int Rj=< when i{ j.

When = is sufficiently small, for each x # Ri , we can also assume that
the intersection W s

=(x) & Ri (denoted by W s(x, Ri)) is proper and its
boundary �W s(x, R i) is in �Ri , the boundary of Ri . Similarly, we define
W u(x, R i). Note that W u(x, Ri) is a submanifold with boundary, but
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W s(x, R i) is, in general, not a submanifold. We use relative topologies on
both sets. These sets are invariant under f:

(5) f (W s(x, R i))/W s( f (x), Rj), W u(x, Ri)/f &1(W u( f (x), Rj)),
when x # int Ri and f (x) # int Rj .

Define a p_p matrix A=(aij) by the following rule:

aij={1,
0,

if int R i & f &1(int Rj){<
if int Ri & f &1(int Rj)=<

Since we assumed that the map f is topologically mixing, the matrix A is
aperiodic, i.e., there exists a constant n0 depending on A such that all
entries of An0 are positive. Let 7A be the subshift of finite type determined
by the matrix A. For each element of 7A , !=(!( j)) j # Z , define a map
?: 7A � 4 by

?(!)= ,
j # Z

f & j (R!( j))

The map ? acts as a semi-conjugacy between 4 and its symbolic represen-
tation 7A . This semi-conjugacy can be naturally extended to hyperbolic
attractors 2FV

=}i # V 4 and 2F .

?V : }
i # V

7A � 2FV

?� : }
i # Zd

7A � 2F

For any element !� =(!i) i # Zd # }i # Zd 7A , ?� (!� )=(?!i) i # Zd .
We introduce the corresponding metric \q , 0<q<1 on the symbolic

space }i # Zd 7A .

\q(!� , '� )= sup
i # Zd, j # Z

q |i |+| j |d(!i ( j), 'i ( j))

where d( } , } ) denotes the discrete distance on the set [1, 2,..., p]. The defini-
tion of the metric \q is valid for 7A and � i # V 7A , V/Zd. For 7A , we can
simply choose i=0. The map induced by the shift on 7A will be denoted
by _t on all these symbolic spaces. The maps induced by translations on Zd

are denoted by _s . We have f b ?=? b _t , FV b ?V=?V b _t , F b ?� =?� b _t , and
S b ?� =?� b _s .

The next two propositions enable us to pass the computation of
topological pressures for functions on hyperbolic attractors onto their
symbolic representations.
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Proposition 1. The topological pressure for any Ho� lder con-
tinuous function . on 2FV

with respect to the map FV is equal to the
topological pressure for . b ?V on }i # V 7A with respect to the shift _t .

PFV
(.)=P_t

(. b ?V )

In particular, for .V=&log J u8V , the potential function for the SRB-
measure on 28V

for 8V , we have

P8V
(.V )=PFV

(.V b hV )=P_t
(.V b hV b ?V )=0 (4)

Proposition 2. For the map f and any constant :, 0<:<1, there
exists a constant c0>0 such that if � is any function on 2F satisfying the
(small Ho� lder constant) condition

|�(x� )&�( y� )|�c0\:
q(x� , y� )

then the topological pressure for the function .(x� )=&log Juf (x0)+�(x� )
on 2F under the Zd+1-action { induced by the maps F and S is equal to
the topological pressure for the function . b ?� on the symbolic space under
the Zd+1-action (denoted by {*) induced by the maps _t and _s . In par-
ticular, for the function .0 , the potential function for the SRB-measure for
(8, S) on 28 , we have

P{(.0)=P{*(.0 b h b ?� ) (5)

Proposition 1 is standard(1) since the hyperbolic attractor is finite
dimensional. For the detail of the proof of Proposition 2 see Theorems 6
and 7 of ref. 2.

3.3. Zero Topological Pressure

In this section, we prove that

P{(.0)=P{*(.0 b h b ?� )=0

using Eq. (4). The advantage of computing topological pressure on the
symbolic space is that the partition function takes a simpler form because
of the discrete topology on the set of p symbols.

Theorem 1. Let .0 be the potential function for the SRB-measure
+ defined in (2). Then,

P{(.0)=0
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Therefore, the entropy formula holds.

h{(+)=&| .0 d+

Proof. We shall show that P{*(.0 b h b ?� )=0. For simplicity, we
assume d=1 and V is an interval [&m, m]. We denote 8V by 8m , .V

by .m , and ?V by ?m , etc. For d>1, the proof is the same. For every fixed
m, n, we define a set 0mn as follows.

0mn=[(!j ( j)), &m<i<m, &n< j<n | there exists an element

'� =('i ( j)) i, j # Z # }
i # Z

7A such that

'i ( j)=!i ( j), &m<i<m, &n< j<n]

The set 0mn can be thought of as the restriction of the symbolic space
}i # Z 7A (or }m

i=&m 7A) over the region [&m, m]� [&n, n].
One can easily verify that the topological pressures take the simpler

form below (see also, ref. 6).

P_t
(.m b ?m)= lim

n � �

1
2n

log :
! # 0mn

exp :
n

j=&n

.m(_ i
t(!*m)))

where the element !*m # }m
i=&m 7A is so chosen that its restriction to

[&m, m]� [&n, n] is ! # 0mn .

P{*(.0 b h b ?� )= lim
n, m � �

1
4mn

log :
! # 0mn

exp :
m, n

i=&m, j=&n

.0(h(?� (_ j
t _ i

s(!� *))))

where the element !� * # }i # Zd 7A is so chosen that its restriction to
[&m, m]� [&n, n] is ! # 0mn .

Let

amn=
1

2n
log :

! # 0mn

exp :
n

j=&n

.m(?m(_ i
t(!*m)))

=
1

2n
log :

! # 0mn

exp :
n

j=&n

&log Ju8m(hm(F i
m(?m(!*m))))

Then, we have limn � � amn=0.
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Let

bmn=
1

4mn
log :

! # 0mn

exp :
m, n

i=&m, j=&n

.0(h(?� (_ j
t _ i

s(!� *))))

=
1

4mn
log :

! # 0mn

exp :
m, n

i=&m, j=&n

.0(h(F jS i (?� (!� *))))

Then, P{(.0)=limm, n � � bmn .
Since limn � � amn=0 for each m, we can find a sequence [n(m)] such

that

lim
m � �

1
2m

amn(m)=0

Note that the volume Vmn=[&m, m]� [&n(m), n(m)] � Z2 in the sense
of van Hove. Therefore, P{(.0)=limm � � bmn(m) . So, we need only to show
that

lim
m � �

bmn(m)&
1

2m
amn(m)=0

We now use the decomposition of the Jacobian

Ju8m(hm(x� ))= `
m

i=&m

J ufi (x i) exp \& :
m

i=&m

wmi (x� )+
and the definition of the function .0 :

.0(h(x� ))= lim
m � �

wm0(x� )&log Juf (x0)

=�(x� )&log Juf (x0)

lim
m � �

wmi (x� )=�(S ix� )

bmn&
1

2m
amn=

1
4mn

log
�! # 0mn

exp �m, n
i, j=&m, &n .0(h(?� (_ j

t _ i
s(!� *))))

�! # 0mn
exp �n

j=&n&log Ju8m(hm(?m(_ j
t(!*m))))

(6)
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Since there are same number of terms in the numerator and the
denominator in the logarithm in (6), we simply need to estimate the follow-
ing expression.

D= } :
m, n

i, j=&m, &n

.0( j(?� (_ j
t _ i

s(!� *))))

& :
n

j=&n

&log Ju8m(hm(?m(_ j
t(!*m)))) }

Plug in the formulas for both .0(h) and Ju8m(hm). Denote ?� (!� *)=x� and
?m(!*m)= y. We choose !*m and !� * so that !*m is the same as the restriction
of !� * to the volume [&m, m]. Thus, y=x� | [&m, m] . Note that the terms
containing Jufi are all canceled out since (S ix� )0= yi . We have,

D= } :
m, n

i, j=&m, &n

.0(h(F jS ix� ))& :
n

j=&n

&log Ju8m(hm(F j
m y))} (7)

= } :
m, n

i, j=&m, &n

(wmi (F jy)&�(F jS ix� ))} (8)

By the estimation (1) we have

|wmi (F jy)&�(F jS ix� )|�=0e&;d(i, m)

where ;>0 and d(i, m)=min[m&i, i+m].
Thus, we have

D= } :
m, n

i, j=&m, &n

(wmi (F jy)&�(F jS ix))}
�(2n+1) :

m

i=&m

=0e&;d(i, m)�C(2n+1)

where C>0 is a constant.
Therefore, we have

}bmn&
1

2m
amn }� 1

4mn
|log(eC(2n+1))|=

C
2m

}
2n(m)+1

2n(m)

which goes to zero as m � �.
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