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The Entropy Formula for SRB-Measures of
Lattice Dynamical Systems
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We give a detailed proof of the entropy formula for SRB-measures of coupled
hyperbolic attractors over integer lattices. We show that the topological
pressure for the potential function of the SRB-measure is zero.
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1. INTRODUCTION

We proved in ref. 3 that the thermodynamic limit of Sinai-Ruelle-Bowen
measures for coupled hyperbolic maps over finite volumes of an integer lat-
tice exists as the volume tends to infinity. The limiting measure, also called
an SRB-measure, is an equilibrium state satisfying the variational principle
of statistical mechanics for a Holder continuous function ¢, on an infinite-
dimensional hyperbolic attractor. The measure is invariant and exponen-
tially mixing with respect to both spatial and temporal translations. The
formula for computing the potential function ¢, is explicitly given. In this
note, we give a detailed proof of a result in ref. 3 stating that the topologi-
cal pressure for this potential function is zero with respect to the group
actions induced by both spatial and temporal translations. Thus, the
entropy formula holds for the SRB-measure for the coupled hyperbolic
map lattice. This result further justifies the name of the measure since the
topological pressure being zero is one of the characteristics of an SRB-
measure on hyperbolic attractors of finite dimension. It also paves the way
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for estimating the measure theoretical (space-time) entropy in terms of
hyperbolicity and coupling strength of coupled hyperbolic map lattices.

The proof is a rather straightforward computation using the definition
of topological pressures for continuous functions on a compact metric
space with respect to a Z%action induced by d interchangeable homeo-
morphisms. First, we briefly describe the infinite-dimensional system:
weakly coupled identical systems with a uniformly hyperbolic attractor and
the results concerning its SRB-measure. We then use the conjugacy
between hyperbolic systems and their symbolic representations and special
properties of the potential function ¢, to show that its topological pressure
is zero.

2. SRB-MEASURES FOR COUPLED MAP LATTICES

Let M be a smooth compact Riemannian manifold and f be a C"-diffeo-
morphism of M, r> 1. We assume that f possesses a hyperbolic attractor A,
i.e., f'is uniformly hyperbolic on A and there exists an open neighborhood
U> A such that f(U)= U and N, f5(U) = 4.

A Sinai-Ruelle-Bowen measure ¢ for f on the hyperbolic attractor is
described by the following limit:

n—1

lim &Y g(f4(x) = [ g du

n>o Mo
where the equality holds for any continuous function g on M and for
almost all xe U with respect to the Lebesgue measure.)’ When, f is
topologically transitive on A, this measure u is also unique and is the
unique equilibrium state that satisfies the entropy formula

1) == o,(x) du

where h,(f) is the measure theoretical entropy and ¢,(x)= —log J“f(x)
(J¥f(x) is the Jacobian of the restriction of f along the unstable manifold
at x).

Since we shall consider SRB-measures for direct product spaces of
(M, f), we further assume that f is topologically mixing on A. This
assumption will ensure uniqueness of SRB-measures since product spaces
of topologically mixing systems are still topologically mixing and topologi-
cal transitivity is not preserved by the direct product.

The direct product of identical copies of M over a d-dimensional
integer lattice .# = X);.z« M; is an infinite-dimensional Banach manifold
with a Finsler metric induced by the Riemannian metric on M.
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The distance on .# induced by the Finsler metric is

p()?, }7) = Sup d(xh y:)

ieZd

where ¥ =(x;) and y=(y;) are two points in .# and d is the Riemannian
distance on M.

The direct product map on .# defined by F= ),z f; possesses an
infinite-dimensional hyperbolic attractor 4,= X);.z« 4;, where f; and A,
are copies of f and A, respectively.

We recall the definitions of some objects discussed in ref. 3.

Let S denote the spatial translations on .# induced by the translations
on the integer lattice Z¢ ie., for any keZ9 and ¥=(x;)e.#, SXx)=
(x; %) Let the map G be a C?-perturbation of the identity map on ./Z.
G is said to be spatially translation invariant if GoS=SoG. It is said to
have short range property if G, written in the form G =(G,;);. 74, Where
G;: M — M,, has the following property: there exist a decay constant 0,
0<0<1 and a constant C > 0 such that for any fixed k € Z? and any points
X=(x;), y=(y,) €4 with x,= y, for all je Z%, j+#k,

d(G,(X), Gi(7)) < CO"Md(x., y)

Define @ = FoG (or equivalently, @ =G-< F, since F is also a diffeo-
morphism). The map @ is a perturbation of F. The infinite-dimensional
dynamical system (., (@, S)) is called a coupled map lattice. If G = id, the
lattice is called uncoupled. When G is spatially translation invariant, @
satisfies the same property and the pair (&, S) generates a Z“*!-action
on /.

In order to study invariant measures of coupled map lattices, a family
of metrics compatible with the Tychonov compact topology (the direct
product topology) on .# is introduced. The metric p,, 0 <g <1, is defined
by

/)q(xs .)7) = sup qlild(xi’ yt)

iezd

where |i| = i} | + |ip| + -+ + |igl, i= (i}, iz,.... ig) € Z°
We state the main results in refs. 2 and 3 on the existence of SRB-
measures for @ and the properties of this measure.

(1) For any &>0 there exists 0<dJ<d, such that, if dis-
ter (@, F) <9, then there is a unique homeomorphism /: A4 — .# satisfying
Doh=hoF|, with distco (h, id) <e. In particular, the set A, =h(4p) is a
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topologically mixing hyperbolic attractor for the map @. The conjugating
map /4 is spatial translation invariant whenever G is.

(2) For any 0 <0< 1 there exists d >0 such that if G is a C>-spatial
translation invariant short range map with a decay constant 6 and
disto1 (G, id) <0, then the conjugacy map /4 is Holder continuous with
respect to the metric p,, 0 <g <1. Moreover, h = (h;(X));cz« satisfies the
following property:

d(ho(%), ho(y)) < C(0) d*(X» Vi)

for every k#0 and any X, je.# with x,=y, ieZ% i#k, where a,
0<a<1, and C(J)> 0 are constants. Furthermore, C(d) —» 0 as J — 0.

Fix a point X* € 4,4, and a finite volume V = 79 the map ®,: x, —
@Dy(xy) on My,=® ;. M, is defined coordinatewisely by

(Pp(xp));=(P((xy, X*[p)); ieV

where the point (x,, x*| ) denotes an element in .# whose restrictions to
V' and its complement V are x, and x*|;, respectively.

The map @, is a difftomorphism of M, when the perturbation G is
sufficiently close to identity and it is C!-closed to the diffeomorphism
F,= Q. f By the structural stability theorem @, possesses a hyperbolic
attractor A4, since F, has a hyperbolic attractor 45 = &) ;. 4. There
exists a conjugating homeomorphism hy: 4y, — Ag,, Pyohy=hyoFy.

The maps @, and %, provide finite-dimensional approximations for
the infinite-dimensional maps @ and #, respectively.

(3) Let uy be the SRB-measure on the hyperbolic attractor 4, for
the map @,. Then, the measure u, weakly converges to a measure u
on 44,. The measure u is invariant and exponentially mixing under @ and
spatial translations S. It also satisfies the variational principle:

P90) =h(1) + [ po d

where 7 denotes the Z9*1! action on 44 induced by @ and S, P.(¢,) is the
topological pressure for the potential function ¢,, and /,(7) is the measure
theoretical entropy of u with respect to 7.

(4) The construction of the potential function ¢, can be described in
the following way. By assumption, the map @ = FoG is C'-close to F and
the map G has short range property, under an appropriately chosen local
coordinate system, the restriction of the derivative operator of @ to the
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unstable space Eg, at point % ,(x,) has the following matrix representa-
tion:

D¢|E’j¢,y(h,,(x,,)) =D (x))I+ Ap(xy))

where 4, (xy) =(a;(xy)) is a [ V] x|V]| matrix with submatrices a;(x;) as
its entries, (D¥f(x;)) is a diagonal matrix with D¥f(x;), i€ V' (the matrix
representation of Df restricted to the unstable space) on its main diagonal,
and |V is the cardinality of V. Note that x, €4y . The norms of sub-
matrices a;(x;) are small and go to zero exponentially fast as |i — j| — co.
The entries a;(x, ) are also Holder continuous with respect to the metric p,.
The determinant of (/+ A4,,) is then expanded in the following way.

det(I+ A ,) =exp(trace(In(/+ A4 ,)) =exp <— > wV,->

ieV

where

(="

n

Wy(xy) = OZO: trace(a’i(x,))

and a’(x,) are submatrices on the main diagonal of (4 ,)".
The functions w;(x,) have the following properties. There exist con-
stants ¢, >0, >0 such that

Wyi(Xp) = wpi(y )] <3037ﬁd(i’ ") (1)

where V< V', x,,= yy |y, and d(i, V') denotes the distance from the lattice
site i to the boundary of V. The estimation (1) implies that the limit
W, (¥) =1limy,_, za wy;(x ) exists for each ie Z% This limit is also translation
invariant in the following sense. Let Y(X)=1lim,_ zawpo(x,). Then,
V(%) =y(S%). Moreover, (x) is Holder continuous with respect to the
metric p, with a Holder constant going to zero as the C Ldistance between
@ and F tends to zero.

The potential function ¢, for the SRB-measure for the coupled map
lattice (@, S) composed with the conjugating map 4 is

Po(h(X)) = —log J*f(x,) + ¥/(X) (2)

The potential function is expressed slightly differently from that in ref. 3
since we have a hyperbolic attractor instead of an Anosov system and ¢,
is described by a composition for the convenience of later computation.
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3. COMPUTING THE TOPOLOGICAL PRESSURE

In this section we prove that the topological pressure of the potential
function ¢, with respect to the Z¢*!-action induced by the coupled map
lattice (@, S) is zero on the hyperbolic attractor A,="h(4f): P(¢p,) =0.
Therefore, the entropy formula /,(7) = —f @o du holds for the measure u.
We first recall the definition of the topological pressure.®

3.1. Topological Pressure

Let Q be a compact metric space and 7 a Z¢*!-action on € induced
by d+ 1 commuting homeomorphisms, d>0. For any two covers of Q2
U={U} and Z={B,}, U v # denotes the cover of Q consisting of all
sets of the form B;n U;. For a finite volume V< 79+ define

w¥=\/ vu
ieV

Let % be any cover of Q, ¢ a continuous function on Q, and ¥ a finite
subset of Z?* . The partition function is defined by

(0, 0) = I{nn}l{Zexp{sup > ot || (3)
B] xXe€B; jeV

where the minimum is taken over all subcovers { B;} of %". Because of the
subadditivity of the partition function, the following limit exists and is call
the topological pressure with respect to the cover %.

1
,U)=lim —log Z (@, U
Pop,u) hm g Zyia)p, U)

where V1 0 means V approaches Z?*! in the sense of Van Hove. When
9 is an open cover, the quantity

Pr((p): hm P ((Pa %)_Sup P ((Pa%)

diam # — 0

is called the topological pressure of ¢ with respect to 7.
It is easy to see that for a fixed volume ¥V,

Po,U)=Pp,U")

When 7 is expansive and diam % is smaller than the expansive constant, we
have P.(¢) =P (¢, U).
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Before we proceed to the actual computation, we first state the
strategy:

First of all, we project every object onto the hyperbolic attractor 4
for F. The metrics we are using now is the metric p,. Since the conjugating
map & is Holder continuous, it is easy to see that P (@)= P (@(h(X)). It is
much easier to compute P (¢(h(X)) since the Z9*+!-action 7 induced by
(F, S) is now acting on the direct product space 4p= &) ;cz¢ 4;.

Next, we use the Markov partition of 4 for the map f to obtain a
natural symbolic representation of the system (4, (F, S)). Using a result
from an earlier paper,® we can compute the topological pressure on the
symbolic space where the discrete topology is an advantage.

In the actually computation of the partition function for the potential
function ¢4(h(x)) with respect to the Z* !-action t, we compare it with the
partition function of the potential function —log J*® ,(/h,(x,)) for the
SRB-measure of @, projected onto the hyperbolic attractor 4,. Note that
this partition function is computed with respect to the Z-action generated
by F,.. Using the fact that the pressure is zero for —log J*@ ,(h,(x,)). We
can prove that the pressure for ¢, is also zero.

3.2. Markov Partition and Symbolic Representation

Since the set 4 is a hyperbolic attractor for the diffefomorphism f, for
any ¢ >0, there exists a Markov partition of A into proper rectangles:

where {R,} satisfy the following properties.-*

(1) diam £ =max; diam(R;) <e.
(2) For each i, R, is proper: int R; = R;.

(3) For any two points x, y € R;, there is a unique point in the inter-
section of the local stable manifold at x, W3(x) and the local unstable
manifold at y, W¥(y). This point denoted by [x, y] is alsoin R;: [x, y] =
Wix)n W¥y)eR,;, i.e. R;1s a rectangle.

(4) intR;nint R;= & when i # j.

When ¢ is sufficiently small, for each x € R;, we can also assume that
the intersection Wi(x) N R; (denoted by W¥*(x, R;)) is proper and its
boundary 0W?*(x, R;) is in OR;, the boundary of R;. Similarly, we define
W*(x, R;). Note that W*(x, R;) is a submanifold with boundary, but
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W*(x, R;) is, in general, not a submanifold. We use relative topologies on
both sets. These sets are invariant under f:

(5) fOW*(x, R)) = W*(f(x), R),  W"(x, R) =f ~(W"(f(x), R)),
when x eint R; and f(x) eint R,;.

Define a p x p matrix 4 = (a;) by the following rule:

(1 if int R,nf~'(int R)) # &
9= 0, if intR,nf ! (int R)) =

Since we assumed that the map f is topologically mixing, the matrix 4 is
aperiodic, i.e., there exists a constant n, depending on A4 such that all
entries of 4™ are positive. Let X', be the subshift of finite type determined
by the matrix A. For each element of X ,, {=({(/));cz, define a map
w2, —Aby

ﬂ VA Ré(/)

JEZ

The map 7 acts as a semi-conjugacy between 4 and its symbolic represen-
tation 2 ,. This semi-conjugacy can be naturally extended to hyperbolic
attractors Ay, = ®;cp 4 and Ap.

Ty Q 2> Adp,
ieV
TR 2 oAp
iezd
For any element f ( z)tezde ®tezd ZA’ (é) (néi)iezd'
We introduce the corresponding metric p,, 0 <g <1 on the symbolic

space X ;czd 2 4-
p& = sup " VAE (), ni()))

iEZd,jEZ

where d( -, -) denotes the discrete distance on the set {1, 2,..., p}. The defini-
tion of the metric p,, is valid for £, and ® ;. 24, V= Z% For X, we can
simply choose i=0. The map induced by the shift on X', will be denoted
by o, on all these symbolic spaces. The maps induced by translations on Z¢
are denoted by a,. We have fon=nog,, Fyon,=ny00,, Fot=7no0,, and
Som=mo0,.

The next two propositions enable us to pass the computation of
topological pressures for functions on hyperbolic attractors onto their
symbolic representations.
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Proposition 1. The topological pressure for any Holder con-
tinuous function ¢ on Ay, with respect to the map Fy is equal to the
topological pressure for ¢ o, on X);.; 2, with respect to the shift o,.

PF,,((”) = Pat((POTCV)

In particular, for ¢, = —logJ*®,, the potential function for the SRB-
measure on 44 for @, we have

P¢V(¢V)=PFV(¢VOhV)=Pat((pVthoﬂV)=0 (4)

Proposition 2. For the map f and any constant a, 0 <a <1, there
exists a constant ¢, >0 such that if i is any function on 4 satisfying the
(small Holder constant) condition

[W(X) =¥ (D) < copg(X, )

then the topological pressure for the function ¢(x)= —log J*f(x,) + ¥(X)
on A, under the Z?*!-action 7 induced by the maps F and S is equal to
the topological pressure for the function ¢ o7 on the symbolic space under
the Z9*!-action (denoted by 7*) induced by the maps ¢, and &,. In par-
ticular, for the function ¢, the potential function for the SRB-measure for
(@, S) on 44, we have

P(po) =Po(poohon) (5)

Proposition 1 is standard") since the hyperbolic attractor is finite
dimensional. For the detail of the proof of Proposition 2 see Theorems 6
and 7 of ref. 2.

3.3. Zero Topological Pressure
In this section, we prove that
PT(¢0):PT*(¢OOhOﬁ):O

using Eq. (4). The advantage of computing topological pressure on the
symbolic space is that the partition function takes a simpler form because
of the discrete topology on the set of p symbols.

Theorem 1. Let ¢, be the potential function for the SRB-measure
i defined in (2). Then,

P (o) =0
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Therefore, the entropy formula holds.

hili) = — [ 9o du

Proof. We shall show that P.«(@ycho7)=0. For simplicity, we
assume d=1 and V is an interval [ —m, m]. We denote @, by ®,,, ¢,
by ¢,,, and 7}, by =«,,, etc. For d> 1, the proof is the same. For every fixed
m, n, we define a set 2, as follows.

Qon = {(fj(j)), —m<i<m, —n< j<n|there exists an element
ﬁ:(ﬂi(j))i,jgze ® 2y such that
ieZ

ni(j)=E&(j), —m<i<m, —n<j<n}

The set Q,,, can be thought of as the restriction of the symbolic space
®icz 24 (or QT _, 2 4) over the region [ —m, m]® [ —n, n].

One can easily verify that the topological pressures take the simpler
form below (see also, ref. 6).

1 n A
Po(¢mom,)= lim - log Y oexp Y 9u(ai(ER))

n— e, j=—n

where the element ke ® ™ 2, is so chosen that its restriction to

i=—m

[—-m,m]®[—nn]isle,,.

_ . 1 e I
Po(poohem)= lim ——log } exp )  @olh(n(a{oy(C*))))
n,m— oo 4Mn fe,, i=—m, j=—n

where the element &*e ®,.,«2, is so chosen that its restriction to
[—-mm]®[—nn]is (eQ,,,.
Let

1 2 .
am=5-108 Y exp Y pu(muloi(Eh)

e, j=—n

1 - ;
=%10g Y, exp Y —log JU®@,(h,(Fi (n,(E%))))

e, j=—n

Then, we have lim,, _, ., a,,, =0.
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Let
- = J (%
b= 4mn1°gé§g X olb(rlaiol )
1 mn
= J *
a8 L O X oulESEE)

Then, Pr((pO) = lin’lm, n— oo bmn'
Since lim,, , ., 4,,, =0 for each m, we can find a sequence {n(m)} such
that

im  — @,y =0
m

m — oo 2

Note that the volume V,,,=[ —m, m]® [ —n(m), n(m)] — Z* in the sense
of van Hove. Therefore, P, () =1im,, _, o, b,nm)- SO, we need only to show
that

We now use the decomposition of the Jacobian
J“@, (h, (%)) = ]_[ Jf(x;) exp < Z wmi(f)>

and the definition of the function ¢:

Po(h(X)) = Lim w,,(xX)—log J*/(x,)

m — oo

=Y(x) —log J*f(x,)

s 1 Yiea,, P T _n Polh(@(a]0(E))))
2m "4 Z;eg exp Xj_ _, —log J*@,,(h,,(m,(c{(E))))
(6)
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Since there are same number of terms in the numerator and the
denominator in the logarithm in (6), we simply need to estimate the follow-
ing expression.

m,n

D=| ¥ eia(eloy(c*)))

i,j=—m, —n

- i —log J“®,,(h,(m,(c](E3))))

j=-—n

Plug in the formulas for both ¢(/) and J“®,(h,,). Denote 7(¢*) = x and
7,,(E%) = y. We choose ¢* and &* so that £* is the same as the restriction
of &* to the volume [ —m, m]. Thus, Y =X|{ _m m7- Note that the terms
containing J*f; are all canceled out since (S°x), = y,;. We have,

D=| Y ghFSE)— Y —log /D, (h,(Fly)| ()
=Y ) —w(FISTE) (8)

By the estimation (1) we have
Wi (Fly) = Y(FIS')| < e P4

where >0 and d(i, m) =min{m —i, i + m}.
Thus, we have

D=| Y (waulFiy)—y(FISx))

i,j=—m, —n

<@2n+1) Y ge MM C(2n+1)

i=—m

where C >0 is a constant.
Therefore, we have

1
b, ——a

mn 2m mn

C 2n(m)+1

1
< C2n+1)\| —
~dmn llog(e ) 2m  2n(m)

which goes to zero as m — co.
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